Nº	Название статьи	Авторы	Год	Название журнала	Краткая аннотация	Ссылка
	•			2020		
		Ка	федра то	еоретической и яд	церной физики	
1.	Determination of the primary energy using an ultrathin calorimeter	Elena Dmitrieva, Anastasiya Fedosimova, Igor Lebedev, Abzal Temiraliev, Medeu Abishev, Tolegen Kozhamkulov, Andrey Mayorov and Claudio Spitaleri	2020	J. Phys. G: Nucl. Part. Phys. 47 035202, Q2 https://doi.org/1 0.1088/1361- 6471/ab67e7	An approach for measuring energy of cosmic-ray particles with energies $E > 10^{12}$ eV using an ultrathin calorimeter is presented. The method is based on the analysis of the correlation dependence of the cascade size on the rate of development of the cascade process. In order to determine the primary energy, measurements are made based on the number of secondary particles in the cascade, N _e , at two observation levels Z ₁ and Z ₂ , separated by an absorber layer. Based on the obtained measurements, a correlation analysis of the dependence of logN _e (Z ₁) on th _e difference d N = logN _e (Z ₁) - logN _e (Z ₂) is carried out. The correlation curves (logN _e from d N) in the negative part of the dN axis are almost parallel to each other and practically do not depend on the depth of the cascade development. It makes it possible to determine the primary energy using an ultrathin calorimeter. The best option for applying the method is a calorimeter, which has a unit with a heavy target, leading to the rapid development of the cascade, and a homogeneous measuring and absorption block.	https://www.k aznu.kz/ru/25 337/page/
2.	Volkov–Akulov– Starobinsky supergravity revisited	Aldabergenov, Y.	2020	European Physical Journal C 80(4),329, Q2 https://doi.org/1 0.1140/epjc/s10 052-020-7888-8	We find new realizations of Volkov–Akulov–Starobinsky supergravity, i.e. Starobinsky inflationary models in supergravity coupled to a nilpotent superfield describing Volkov–Akulov goldstino. Our constructions are based on the no-scale Kähler potential K= - 3 log (T+ T ⁻) for the inflaton field, and can describe de Sitter vacuum after inflation where supersymmetry is broken by the goldstino auxiliary component. In fact, we show that a more general class of models with K= - $\alpha \log (T+T^-)$ for $3 \le \alpha \le 6.37$ can accomodate Starobinsky-like inflation with the universal prediction ns≈1-2Ne and r≈4 $\alpha(\alpha$ - 2)2Ne2, while for $6.37 \le \alpha \le 7.23$ viable hilltop inflation is possible (with n _s and r close to the above expressions). We derive the full component action and the masses of sinflaton, gravitino, and inflatino that are generally around the inflationary Hubble scale. Finally, we show that one of our models can be dualized into higher-derivative supergravity with constrained chiral curvature superfield.	https://www.k aznu.kz/ru/25 337/page/

3.	Aspects of gauged R symmetry in SU (1,1) /U (1) supergravity	Aldabergenov, Y.	2020	Physical Review D 101(1),015016, Q1 https://doi.org/1 0.1103/PhysRev D.101.015016	We propose a novel realization of spontaneous supersymmetry breaking in de Sitter vacuum by F- and D-terms in N=1 four- dimensional supergravity coupled to a chiral superfield with SU(1,1)/U(1) target space. Our construction features gauged U(1)R symmetry rotating the chiral scalar field by a phase. Both supersymmetry and R-symmetry can be spontaneously broken, and for two particular parameter choices we obtain no-scale supergravity with positive tunable cosmological constant.	https://www.k aznu.kz/ru/25 337/page/
4.	Minimal Starobinsky supergravity coupled to a dilaton-axion superfield	Yermek Aldabergenov, Shuntaro Aoki, Sergei V. Ketov	2020	Physical Review D 101 (2020) 7, 075012, Q1 https://doi.org/1 0.1103/PhysRev D.101.075012	The minimal Starobinsky supergravity with inflaton (scalaron) and goldstino in a massive vector supermultiplet is coupled to the dilaton-axion chiral superfield with the no-scale Kähler potential and a superpotential. The Kachru-Kallosh-Linde- Trivedi-type superpotential with a constant term is used to stabilize dilaton and axion during inflation, but it is shown to lead to an instability. The instability is cured by adding the alternative Fayet-Iliopoulos (FI) term that does not lead to the gauged R symmetry. Other stabilization mechanisms, based on the Wess-Zumino-type superpotential, are also studied in the presence of the FI term. A possible connection to the D3-brane models is briefly discussed too.	https://www.k aznu.kz/ru/25 337/page/
5.	Primordial black holes from modified supergravity	Yermek Aldabergenov, Andrea Addazi, Sergei V. Ketov	2020	European Physical Journal C, 80, Q1 https://doi.org/1 0.1140/epjc/s10 052-020-08506- 6	The modified supergravity approach is applied to describe a formation of Primordial Black Holes (PBHs) after Starobinsky inflation. Our approach naturally leads to the two-(scalar)-field attractor-type double inflation, whose first stage is driven by scalaron and whose second stage is driven by another scalar field which belongs to a supergravity multiplet. The scalar potential and the kinetic terms are derived, the vacua are studied, and the inflationary dynamics of those two scalars is investigated. We numerically compute the power spectra and we find the ultra-slow-roll regime leading to an enhancement (peak) in the scalar power spectrum. This leads to an efficient formation of PBHs. We estimate the masses of PBHs and we find their density fraction (as part of Dark Matter). We show that our modified supergravity models are in agreement with inflationary observables, while they predict the PBH masses in a range between 10 ¹⁶ g and 10 ²⁰ g. In this sense, modified supergravity provides a natural top-down approach for explaining and unifying the origin of inflation and the PBHs Dark Matter.	https://www.k aznu.kz/ru/25 337/page/

6.	New measurements and reanalysis of 14N elastic scattering on 10B target	Nassurlla M., Burtebayev N., Sadykov T.Kh., Boztosun I., Amangeldi N., Alimov D., Kerimkulov Zh., Burtebayeva J., Nassurlla, M., Kurakhmedov A., Sakuta S.B., Karakoc M., Ibraheem A.A., Kemper K.W., Hamada Sh.	2020	Chinese Physics C, V.44(10), P.104103, Q2 https://doi.org/1 0.1088/1674- 1137/abab89	The angular distributions of elastic scattering of ¹⁴ N ions on ¹⁰ B targets have been measured at incident beam energies of 21.0 and 24.5 MeV. Angular distributions at higher energies 38-94.0 MeV (previously measured) were also included in the analysis. All data were analyzed within the framework of the optical model and the distorted waves Born approximation method. The observed rise in cross sections at large angles was interpreted as a possible contribution of the α -cluster exchange mechanism. Spectroscopic amplitudes SA ₂ and SA ₄ for the configuration ¹⁴ N \rightarrow ¹⁰ B + α were extracted. Their average values are 0.58±0.10 and 0.81±0.12 for SA ₂ and SA ₄ , respectively, suggesting that the exchange mechanism is a major component of the elastic scattering for this system. The energy dependence of the depths for the real and imaginary potentials was found.	https://www.k aznu.kz/ru/25 337/page/
7.	Neutrino oscillation in the q-metric	Boshkayev K., Luongo O., Muccino M.	2020	European Physical Journal C, 2020, 80(10), 964, Q1 https://doi.org/1 0.1140/epjc/s10 052-020-08533- 3	We investigate neutrino oscillation in the field of an axially symmetric space-time, employing the so-called q-metric, in the context of general relativity. Following the standard approach, we compute the phase shift invoking the weak and strong field limits and small deformation. To do so, we consider neutron stars, white dwarfs and supernovae as strong gravitational regimes whereas the solar system as weak field regime. We argue that the inclusion of the quadrupole parameter leads to the modification of the well-known results coming from the spherical solution due to the Schwarschild space-time. Hence, we show that in the solar system regime, considering the Earth and Sun, there is a weak probability to detect deviations from the flat case, differently from the case of neutron stars and white dwarfs in which this probability is larger. Thus, we heuristically discuss some implications on constraining the free parameters of the phase shift by means of astrophysical neutrinos. A few consequences in cosmology and possible applications for future space experiments are also discussed throughout the text.	https://www.k aznu.kz/ru/25 337/page/
8.	Accretion disc luminosity for black holes surrounded by dark matter	Boshkayev K., Idrissov A., Luongo O., Malafarina D.	2020	Monthly Notices of the Royal Astronomical Society, 2020, 496(2), c. 1115-1123, Q1	We consider the observational properties of a static black hole space-time immersed in a dark matter envelope. We investigate how the modifications to geometry induced by the presence of dark matter affect the luminosity of the black hole's accretion disc. We show that the same disc luminosity as produced by a black hole in vacuum may be produced by a smaller black hole surrounded by dark matter under certain conditions. In particular, we demonstrate that the luminosity of the disc is	https://www.k aznu.kz/ru/25 337/page/

				https://doi.org/1 0.1093/mnras/st aa1564	markedly altered by the presence of dark matter, suggesting that the mass estimation of distant supermassive black holes may be changed if they are immersed in dark matter. We argue that a similar effect holds in more realistic scenarios, and we discuss the refractive index related to dark matter lensing. Finally, we show how the results presented here may help to explain the observed luminosity of supermassive black holes in the early Universe.	
9.	Swelling of Doubly Magic Ca 48 Core in Ca Isotopes beyond N=28	Tanaka M., Burtebayev N., Nassurlla Maulen, Kenzhina I., T. K. Zholdybayev, et al.	2020	Physical Review Letters Volume 124, Issue 10, 13 id 1950028, Q1 https://doi.org/1 0.1103/PhysRev Lett.124.102501	Interaction cross sections for Ca42-51 on a carbon target at 280 MeV/nucleon have been measured for the first time. The neutron number dependence of derived root-mean-square matter radii shows a significant increase beyond the neutron magic number N=28. Furthermore, this enhancement of matter radii is much larger than that of the previously measured charge radii, indicating a novel growth in neutron skin thickness. A simple examination based on the Fermi-type distribution, and mean field calculations point out that this anomalous enhancement of the nuclear size beyond N=28 results from an enlargement of the neutron density distribution, which implies the swelling of the bare Ca48 core in Ca isotopes beyond N=28.	https://www.k aznu.kz/ru/25 337/page/
10.	Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: A review	Bakbolat, B., Daulbayev, C., Sultanov, F., Bekbaev, A., Chuprakov, I, et al.	2020	Nanomaterials, 2020, 10(9), crp. 1–16, 1790, Q2 https://doi.org/1 0.3390/nano100 91790	The growth of industrialization, which is forced to use non- renewable energy sources, leads to an increase in environmental pollution. Therefore, it is necessary not only to reduce the use of fossil fuels to meet energy needs but also to replace it with cleaner fuels. Production of hydrogen by splitting water is considered one of the most promising ways to use solar energy. TiO ₂ is an amphoteric oxide that occurs naturally in several modifications. This review summarizes recent advances of doped TiO ₂ -based photocatalysts used in hydrogen production and the degradation of organic pollutants in water. An intense scientific and practical interest in these processes is aroused by the fact that they aim to solve global problems of energy conservation and ecology.	https://www.k aznu.kz/ru/25 337/page/
11.	Determination of the enhancement factor and the electron screening potential in the D(3He,p)4He reaction using TiD targets.	V. M. Bystritsky, D. K. Chumakov, G. N. Dudkin, M. Filipowicz, A. R. Krylov, B. A. Nechaev, A. Nurkin, V. N. Padalko, F. M. Pen'kov, A. V. Philippov, Yu. Zh.	2020	The European Physical Journal A, volume 56. Article number: 60 (2020), Q2	ThestudyoffusionreactionsD(d,p)3HD(d,p)3H, D(d,n)3HeD(d,n)3He, T(d,n)3HeT(d,n)3He,3He(d,p)4He3He(d,p)4He,andD(3He,p)4HeD(3He,p)4He at astrophysical energies is ofinterestforbothbasicandappliedprovideinformation on electron screening of nuclear reactionsthatprovideimportantinformation on the role of electrons in	https://www.k aznu.kz/ru/25 337/page/

		Tuleushey, V. A.		https://doi.org/1	reactions induced by deuterons, tritons, and nuclei of helium	
		Varlachev & E. A		0.1140/epia/s10	isotopes that proceed in reactors.	
		Zhakanbaey		050-020-00038-	The D(3He,p)4HeD(3He,p)4He reaction was investigated at	
		Zhakanouev		7	the pulsed plasma Hall accelerator (Tomsk) in	
					the $3He+3He+$ ion energy range $EHe=16-34EHe=16-34$ keV	
					(laboratory reference frame) with a step of 2 keV. The goal of	
					this work was to determine experimentally the enhancement	
					factor of the $D(3He n)4HeD(3He n)4He$ reaction and the	
					electron screening potential LIeLie using a TiD targets with	
					Miller indices [111] and [100] A strong impact of the target	
					crystal structure on reaction enhancement factor was	
					discovered. We believe that solid state effects make the largest	
					contribution to the behavior of the enhancement factor D(3He	
					p/4HeD(3He, p)/4He of the reaction as a function of energy	
					One of these effects is the particle channeling in crystal	
					structures. An unexpected increase of the enhancement factors	
					for the $D(3He - p)/(He - p)/(He - p)/(He - reaction - in the energy)$	
					range 16:2216:22 keV probably indicates the emergence of	
					some new mechanism that increases the yield of the reaction	
					with lowering energy	
12				Dhysical Daviany	With in the framework of the modified potential cluster model	https://www.k
12.				$C_{2020} = 102(4)$	with forbiddon states, the $N13(p_N)O14$ reaction rate and the	nups.//www.k
				C, 2020, 102(4), 045805, 02	with forbidden states, the $N15(p, \gamma)O14$ reaction rate and the astrophysical S factor are considered. It is shown that the first	$\frac{dZIIU.KZ}{10/23}$
				043803, Q2	n13 N resonance determines the S factor and contributions of	557/page/
				https://doi.org/1	p15 N resonance determines the S factor and contributions of the M1 and E2 transitions are negligible at anarging $E < 1 MaV$	
				0.1103/PhysRev	but are significant at high anargias. The S factor strongly	
				C.102.045805	depends on the \$13 resonance perameters. The influence of the	
		Dubovichenko,			width of the S13 resonance on the S factor is demonstrated. The	
	Reanalysis of the N 13	S.B., Kezerashvili,			width of the STS resonance of the STactor is demonstrated. The	
	$(\mathbf{p}, \mathbf{\gamma})$ O 14 reaction and its	R.Y., Burkova,			the resetion rate is proposed. A comparison of our seloulation	
	role in the stellar CNO	N.A., Dzhazairov-	2020		with existing data is addressed. Results of our calculations for	
	cycle	Kakhramanov.			with existing data is addressed. Results of our calculations for the $N12(n x)O14$ reaction rate provide the contribution to the	
	5	A V Beisenov B			the $N15(p,\gamma)O14$ reaction rate provide the contribution to the	
					steading improving reaction-rate database instances. Our seleviations of the $N12(n y)O14$ reaction rate clong with results	
					for the rates of the N14($\mu_{\rm N}$)O15 and C12($\mu_{\rm N}$)N12 processes	
					provide the temperature range $0.12 \times T0 \times 0.07$ for the conversion	
					of the carbon-nitrogen-oxygen (CNO) cycle to the bot CNO	
					ou lie carbon-introgen-oxygen (CNO) cycle to the not CNO	
					explosion at temperatures of about 0 1T0 and at late stores of	
					explosion at temperatures of about 0.119 and at falle stages of	
					evolution of supermassive stars at temperatures of about 1.019,	

					the ignition of the hot CNO cycle could occur at much lower densities of a stellar medium.	
13.	Influence of resonances on the $11B(n,\gamma)12B$ capture reaction rate. Capture to the ground state of $12B$	Dubovichenko, S.B., Burkova, N.A., Dzhazairov-Kakhramanov, A.V., Tkachenko, A.S.	2020	Astroparticle Physics, Volume 123, 102481, Q2 https://doi.org/1 0.1016/j.astropa rtphys.2020.102 481	Within the framework of the modified potential cluster model with a classification of orbital states according to Young diagrams, the possibility of describing experimental data for total cross sections of the neutron radiative capture on ¹¹ B to the ground state of ¹² B at energies of 10 meV (1 meV = 10^{-3} eV) to 7 MeV was considered. It was shown that, taking into account only the E1 transition from the S state of the n ¹¹ B scattering to the ground state of ¹² B, it is quite possible to explain the magnitude of the known experimental cross sections at energies of 25.3 meV to 70 keV. Furthermore, on the basis of the total cross sections of 10 meV to 7 MeV, but excluding resonances above 5 MeV, the reaction rate is calculated in the temperature range of 0.01 to 10.0 T ₉ . It is shown that the inclusion of low-lying resonance states makes a significant contribution to the reaction rate, starting already with temperatures of 0.2–0.3 T ₉ .	https://www.k aznu.kz/ru/25 337/page/
14.	Reaction rate of p14N → 15Oγ capture to all bound states in potential cluster model	Dubovichenko, S., Burkova, N., Dzhazairov- Kakhramanov, A., Beysenov, B.	2020	International Journal of Modern Physics E, 2020, 29(1), 1930007, Q2 https://doi.org/1 0.1142/S021830 1319300078	Review of calculation results for astrophysical S-factor of the ¹⁴ N(p, γ) ¹⁵ O capture reaction in the p ¹⁴ N channel of ¹⁵ O was presented. It was carried out in the frame of the modified potential cluster model (MPCM) taking into account resonances in the ¹⁵ O spectrum up to 3.2MeV at energy of incident protons varying of 30keV to 5MeV. It is possible to describe experimental data for the astrophysical S-factors of the radiative proton capture on ¹⁴ N to five excited states of ¹⁵ O at excitation energies of 5.18MeV to 6.86MeV, only under assumption, that all five resonances are D scattering waves. Quality new physical interpretation of the capture mechanism is discussed in this channel to the ground state of ¹⁵ O. We assumed that the ground state of ¹⁵ O is determined by the p ¹⁴ N* channel with excited ¹⁴ N* cluster, which immediately allowed us to correctly describe order of values of the experimental S-factor for capture to this state. Taking into account these results, the total S-factor of the proton capture on ¹⁴ N and the reaction rates to the ground and five excited states of ¹⁵ O were determined at temperatures of 0.01T ₉ to 10T ₉ . The parametrization of the total reaction rate with a simple form is performed, which allows as to obtain χ^2 equal to 0.06 with 5% errors of the calculated rate.	https://www.k aznu.kz/ru/25 337/page/

15.	Proca tubes with the flux of the longitudinal chromoelectric field and the energy flux/momentum density	Vladimir Dzhunushaliev, Vladimir Folomeev	2020	Eur. Phys. J. C, (2020) 80:1043, Q1 https://doi.org/1 0.1140/epjc/s10 052-020-08633- 0	We consider non-Abelian SU(3) Proca theory with a Higgs scalar field included. Cylindrically symmetric solutions describing classical tubes either with the flux of a longitudinal electric field or with the energy flux (and hence with nonzero momentum density) are obtained. It is shown that, in quantum Proca theory, there can exist tubes both with the flux of the longitudinal electric field and with the energy flux/momentum density simultaneously. An imaginary particle – Proca proton – in which 'quarks' are connected by tubes with nonzero momentum density is considered. It is shown that this results in the appearance of the angular momentum related to the presence of the non-Abelian electric and magnetic fields in the tube, and this angular momentum is a part of the Proca proton spin.	https://www.k aznu.kz/ru/25 337/page/
16.	Spinor field solutions in F(B2) modified Weyl gravity	Vladimir Dzhunushaliev, Vladimir Folomeev	2020	International Journal of Modern Physics D Vol. 29, No. 13 (2020) 2050094 (17 pages), Q2 https://doi.org/1 0.1142/S021827 1820500947	We consider modified Weyl gravity where a Dirac spinor field is nonminimally coupled to gravity. It is assumed that such modified gravity is some approximation for the description of quantum gravitational effects related to the gravitating spinor field. It is shown that such a theory contains solutions for a class of metrics which are conformally equivalent to the Hopf metric on the Hopf fibration. For this case, we obtain a full discrete spectrum of the solutions and show that they can be related to the Hopf invariant on the Hopf fibration. The expression for the spin operator in the Hopf coordinates is obtained. It is demonstrated that this class of conformally equivalent metrics contains the following: (a) a metric describing a toroidal wormhole without exotic matter; (b) a cosmological solution with a bounce and inflation and (c) a transition with a change in metric signature. A physical discussion of the results is given.	https://www.k aznu.kz/ru/25 337/page/
17.	Thermodynamics and statistical physics of quasiparticles within the quark gluon plasma model	Vladimir Dzhunushaliev, Vladimir Folomeev, Tlekkabul Ramazanov and Tolegen Kozhamkulov	2020	Modern Physics Letters A, Vol. 35, No. 23 (2020) 2050194 (19 pages), Q2 https://doi.org/1 0.1142/S021773 2320501941	We consider thermodynamic properties of a quark-gluon plasma related to quasiparticles having the internal structure. For this purpose, we employ a possible analogy between quantum chromodynamics and non-Abelian Proca-Dirac-Higgs theory. The influence of characteristic sizes of the quasiparticles on such thermodynamic properties of the quark- gluon plasma like the internal energy and pressure is studied. Sizes of the quasiparticles are taken into account in the spirit of the van der Waals equation but we take into consideration that the quasiparticles have different sizes, and the average value of these sizes depends on temperature. It is shown that this results	https://www.k aznu.kz/ru/25 337/page/

18.	Non-Abelian Proca theories with extra fields: particlelike and flux tube solutions	Vladimir Dzhunushaliev, Vladimir Folomeev, Tlekkabul Ramazanov, Arislan Makhmudov and Tolegen Kozhamkulov	2020	Phys. Scr. 95 (2020) 074013 (7pp), Q2 https://doi.org/1 0.1088/1402- 4896/ab9791	in a change in the internal energy and pressure of the quark- gluon plasma. Also, we show that, when the temperature increases, the average value of characteristic sizes of the quasiparticles increases as well. This leads to the occurrence of a phase transition at the temperature at which the volume occupied by the quasiparticles is compared with the volume occupied by the plasma. We consider non-Abelian Proca theories with extra fundamental fields included. In the case of SU(2) Proca theory with nonlinear scalar and spinor fields, we obtain spherically symmetric regular solutions describing particlelike configurations with finite energy. For such systems, we find the energy spectrum and show the presence of a mass gap. In the case of SU(3) Proca theory with a nonlinear scalar field, we obtain cylindrically symmetric solutions describing tubes either with the flux of a longitudinal electric field or with the energy flux or with both of them. It is shown that the tubes with the energy flux may contribute considerably to the Proca proton spin. Consistent with all of this, we have argued that non- Abelian Proca theories containing extra fields may approximately describe some phenomena in OCD.	https://www.k aznu.kz/ru/25 337/page/
19.	Measurements of the low- energy neutron and gamma ray accompaniment of extensive air showers in the knee region of primary cosmic ray spectrum	A. Shepetov, A. Chubenko, B. Iskhakov, O. Kryakunova, O. Kalikulov, S. Mamina, K. Mukashev, V. Piscal, V. Ryabov, N. Saduyev, T. Sadykov, N. Salikhov, E. Tautaev, L. Vil'danova, V. Zhukov	2020	European Physical Journal Plus, 135, Q2 https://doi.org/1 0.1140/epjp/s13 360-019-00092- 1	Purposeful investigation of radiation fluxes strongly delayed in relation to the main particle front of extensive air shower (EAS) was undertaken at the Tien Shan Mountain Cosmic Ray Station. It was found that the passage of the EAS can be accompanied by the delayed thermal neutrons and by the soft (30–50) keV gamma rays, mostly concentrated within a region of about (5– 10) m around the shower axis, where the integral radiation fluence can vary in the limits of (10 ⁻⁴ - 1) cm ⁻² for neutrons, and of (0.1 - 1000) cm ⁻² for gamma rays. The dependence of signal multiplicity on the shower size N _e has a power shape both for the neutron and gamma ray components, with a sharp increase of its power index around the value of N _e \approx 10 ⁶ , which corresponds to the position of the 3 × 10 ⁻¹⁵ eV knee in the primary cosmic ray spectrum. The total duration of detectable radiation signal after the EAS passage can be of some tens of milliseconds in the case of neutron component, and up to a few whole seconds for gamma rays. The delayed accompaniment of low-energy radiation particles can be an effective probe to study the interaction of the hadronic component of EAS.	https://www.k aznu.kz/ru/25 337/page/

20.	Dirac star with SU(2) Yang-Mills and Proca fields	V. Dzhunushaliev, V. Folomeev	2020	PHYSICAL REVIEW D 101, 024023 (2020), Q1 https://doi.org/1 0.1103/PhysRev D.101.024023	We study spherically symmetric strongly gravitating configurations supported by nonlinear spinor fields and non- Abelian SU(2) Yang-Mills/Proca magnetic fields. Regular asymptotically flat solutions describing objects with positive Arnowitt-Deser-Misner masses are obtained numerically. When the mass of the spinor fields is much smaller than the Planck mass, we find approximate solutions that can describe systems with total masses comparable to the Chandrasekhar mass and with effective radii of the order of kilometers. For the values of the system free parameters used here, we show that the SU(2) magnetic field always gives a small contribution to the total energy density and mass of the configurations under investigation. From the astrophysical point of view, one can regard such objects as magnetized Dirac stars.	https://www.k aznu.kz/ru/25 337/page/
21.	Thick branes in higher- dimensional f(R) gravity	V. Dzhunushaliev, V. Folomeev, G. Nurtayeva and S. D. Odintsov	2020	International Journal of Geometric Methods in Modern Physics, Vol. 17, No. 3 (2020) 2050036 (17 pages), Q2 https://doi.org/1 0.1142/S021988 782050036X	We study the thick brane model within $f(R)$ Rn the modified gravity in D-dimensional spacetimes with $D \ge 6$. The system under consideration consists of two branes orthogonal to each other: the four-dimensional Lorentzian brane and $(D - 5)$ - dimensional Euclidean one. It is numerically shown that, for a given D, regular vacuum asymptotically anti-de Sitter solutions exist only in the range $1 < n < D/2$. Depending on the values of n and boundary conditions imposed on the Lorentzian brane, the solutions can pass or not pass through a fixed point located on the Lorentzian brane, and also be Z2-symmetric or nonsymmetric. In the large-D limit, we find the approximate analytic solutions. It is also shown that a test scalar field is trapped on the Lorentzian brane at any D.	https://www.k aznu.kz/ru/25 337/page/
22.	Evaluation of tritium release into primary coolant for research and testing reactors	Kenzhina, I., Ishitsuka, E., Okumura, K., Takemoto, N., Chikhray, Y, et al.	2020	Journal of Nuclear Science and Technology, 2020, crp. 1–12, Q2 https://doi.org/1 0.1080/0022313 1.2020.1791760	The sources and mechanisms for the tritium release into the primary coolant in the JMTR and the JRR-3M containing beryllium reflectors are evaluated. It is found that the recoil release from chain reaction of ⁹ Be is dominant and its calculation results agree well with trends derived from the measured variation of tritium concentration in the primary coolant. It also indicates that the simple calculation method used in this study for the tritium recoil release from the beryllium reflectors can be utilized for an estimation of the tritium release into the primary coolant for a water-cooled research and testing reactors containing beryllium reflectors. © 2020, © 2020 Atomic Energy Society of Japan. All rights reserved.	https://www.k aznu.kz/ru/25 337/page/

23.	Possible neutron and proton halo structure in the isobaric analog states of A=12 nuclei	Demyanova, A.S., Starastsin, V.I., Danilov, A.N., Burtebaev, N., Janseitov, D, et al. Ka¢e	2020 едра теп	Physical Review C, 2020, 102(5), 054612, Q2 https://doi.org/1 0.1103/PhysRev C.102.054612	The differential cross sections of the B11(He3,d)C12 reaction leading to formation of the 0+ ground state and the 15.11-MeV 1+, 16.57-MeV 2-, and 17.23-MeV 1- excited states of C12 are measured at Elab=25 MeV. The analysis of the data is carried out within the coupled-reaction-channels method for the direct proton transfer to the bound and unbound states. The rms radii of the last proton in all states studied are determined. A comparison of the rms radii of the B12, C12, and N12 nuclei in the isobaric analog states (IASs) with isospin T=1 determined by different methods allows us to arrive at a conclusion that these nuclei in the 1- excited states at Ex=2.62, 17.23, and 1.80 MeV, respectively, possess one-nucleon (neutron or proton) halo structure. The enlarged radii and a large probability of the last neutron to be outside of the range of the interaction potential are also found for the 2- states of B12, C12, and N12 at Ex=1.67, 16.57, and 1.19 MeV, respectively. These IASs also can be regarded as candidates for states with one-nucleon (neutron or proton) halo.	https://www.k aznu.kz/ru/25 337/page/
24.	Refractive Index at Low Temperature of Tetrachloromethane and Tetrafluoroethane Cryovacuum Condensates	Aldiyarov, A.U., Sokolov, D.Y., Nurmukan, A.Y., Ramos, M.A.	2020	ACS Omega Q1	We present low-temperature measurements of the refractive index of cryofilms of tetrachloromethane and 1,1,1,2- tetrafluoroethane at different condensation and measurement temperatures between 16 and 130 K. Using cryovacuum condensation, we have been able to obtain thin films in an amorphous state for both substances despite them being very bad glass formers. Then, we have studied the evolution of the refractive index with an increasing temperature, including by transitions to ordered or partially disordered crystalline states. Copyright © 2020 American Chemical Society.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85085873778 &origin=resul tslist&sort=plf -f
25.	The study of thermophysical properties of rubber and plastic household waste to determine the temperature conditions of cryoprocessing	Aldiyarov, A., Sokolov, D., Nurmukan, A., Korshikov, E.	2020	Applied Surface Science	The effect of cryogenic treatment on the thermal characteristics emerged from the operation of automobile tires and plastic bottles of commercial beverages. Automobile tires manufactured according to the state standard "GOST 4754- 97" (ISO 1043-1:2001 "Plastics – Symbols and abbreviated terms – Part 1: Basic polymers and their special characteristics"; ISO 11469:2000 "Plastics – Generic identification and marking of plastics products"; ISO 472:1999 "Plastics – Vocabulary") and bottles made of polyethylene terephthalate for food liquids according to the state standard "GOST R 52789-2007"	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85079104677 &origin=resul tslist&sort=plf -f

					(ECE/TRANS/WP.29/GRB/2019/5 "Proposal for amendments to UN Regulation No. 30") were used as the test samples. Temperature range of investigation was 95–300 K. The thermal conductivity measurements were carried out by a relative stationary heat flow method and the temperature change inside the samples with different forms on heating after cooling to nitrogen temperature. The results obtained are in good agreement with the literature data.	
26.	Investigation of vapor cryodeposited glasses and glass transition of tetrachloromethane films	Aldiyarov, A., Nurmukan, A., Sokolov, D., Korshikov, E.	2020	Applied Surface Science	The vibrational spectra of CCl4 in the gas phase and in the condensed state were measured with a goal to compare them. The thickness of the condensed samples was $d = 2.5 \mu m$. It was shown that an increase in the temperature of the condensed sample leads to a change in the position of the absorption band. Based on the obtained dependence of the position of the absorption band on the temperature of the sample during its heating, an assumption is made that in the temperature range $T = 16 \text{ K-T} = 35 \text{ K}$ the cryocondensate film is in an amorphous high density state. Experiments were conducted to determine the glass transition temperature (Tg = 79 K) in the sample by observing the half-width of the characteristic absorption band at a fixed frequency in the vibrational spectra versus temperature.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85077181158 &origin=resul tslist&sort=plf -f
27.	Application of Organic Fuel Additives to Enhance Coal Combustion Efficiency	Messerle, V.E., Paskalov, G., Umbetkaliyev, K.A., Ustimenko, A.B.	2020	Thermal Engineering	The results from numerical and experimental investigations into the influence of organic fuel additives (OFAs) on the efficiency of combusting high-ash Ekibastuz coal are presented. Technology and a special combustion chamber equipped with a plasma-assisted startup system are proposed. The thermodynamic and kinetic parameters of cocombustion of coal with OFA are numerically analyzed, as a result of which the optimum process temperatures, air-to-coal mass consumption ratios, and combustion chamber geometrical parameters have been selected. Thermodynamic analyses of the coal combustion process have shown that 7 kg of air is required to burn 1 kg of coal. A tendency toward increasing the concentrations of CO2 and H2O and, accordingly, toward decreasing the concentrations of NO, CO, and O2 in the coal combustion products in using OFA has been revealed. The kinetic analysis results have shown that the coal combustion process with a consumption rate of 10 kg/h is fully completed in a combustion chamber 0.2 m in diameter and 0.9 m in height. A series of experiments on cocombustion of Ekibastuz	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85080972161 &origin=resul tslist&sort=plf -f

					coal with OFA was carried out. The investigation results made it possible to evaluate the effectiveness of Omstar-DX1 and Open Flame OFAs, which are prepared as mixtures of light ethers. Comparative experiments of coal combustion with and without OFAs in different concentrations (0–5 cm3 per kg of coal) have shown that the OFAs increase the flame temperature in the combustion chamber's initial part and decrease this temperature at the chamber's outlet. This means that the air–coal mixture takes less time to ignite and, accordingly, it burns out more rapidly. The introduction of OFAs results in a noticeably more efficient combustion of low-grade coal, in smaller emissions of CO and NO, and in an increased concentration of CO2, which points to the more complete combustion of fuel.	
		Кафедра	физики	твердого тела и	нелинейной физики	
28.	Optimized single-axis schedule solar tracker in different weather conditions	Kuttybay, N., Saymbetov, A., Mekhilef, S., Meiirkhanov, A., Svanbayev, Y. Nurgaliyev, M.	2020	Energies Q1 in Control and Optimization	Improving the efficiency of solar panels is the main task of solar energy generation. One of the methods is a solar tracking system. One of the most important parameters of tracking systems is a precise orientation to the Sun. In this paper, the performance of single-axis solar trackers based on schedule and light dependent resistor (LDR) photosensors, as well as a stationary photovoltaic installation in various weather conditions, were compared. A comparative analysis of the operation of a manufactured schedule solar tracker and an LDR solar tracker in different weather conditions was performed; in addition, a simple method for determining the rotation angle of a solar tracker based on the encoder was proposed. Finally, the performance of the manufactured solar trackers was calculated, taking into account various weather conditions for one year. The proposed single-axis solar tracker based on schedule showed better results in cloudy and rainy weather conditions. The obtained results can be used for designing solar trackers in areas with a variable climate.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85092933132 &origin=resul tslist&sort=plf -f
29.	Prediction of energy consumption for LoRa based wireless sensors network	Nurgaliyev, M., Saymbetov, A., Yashchyshyn, Y., Kuttybay, N., Tukymbekov, D.	2020	Wireless Networks Q2 in Information Systems	This paper shows a method for predicting the lifetime of a wireless sensor network based on the LoRa Ra-01 wireless modules. To develop a prediction model of the energy consumption, wireless sensor modules were assembled and it was obtained experimental data using LabView development environment. There were performed experiments to get	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85079789228 &origin=resul

					battery discharge curve. Experimental data of power consumption depending on the packet length were obtained in transmission mode. Using experimental data, we obtained dependencies of system lifetime on sleep mode duration and packet length. The paper also considered a probabilistic approach to predict the system lifetime depending on the probability of data transmission during the day. The lifetime prediction model is based on Markov's chains. The results obtained in this work can be used to predict lifetime of sensor networks more accurately.	tslist&sort=plf -f
30.	Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud	Komesh, T., Baan, W., Esimbek, J.,Rosli, Z., Ibraimov, M.	2020	Astronomy and Astrophysics Q1 in Physics and Astronomy	Aims. We investigate the role of selective dissociation in the process of star formation by comparing the physical parameters of protostellar-prestellar cores and the selected regions with the CO isotope distributions in photo-dissociation regions. We seek to understand whether there is a better connection between the evolutionary age of star forming regions and the effect of selective dissociation Methods. We used wide-field observations of the 12CO, 13CO, and C18O (J = 1-0) emission lines to study the ongoing star formation activity in the Aquila molecular region, and we used the 70 and 250 µm data to describe the heating of the surrounding material and as an indicator of the evolutionary age of the core. Results. The protostellar-prestellar cores are found at locations with the highest C18O column densities and their increasing evolutionary age coincides with an increasing $70\mu\text{m}/250\mu\text{m}$ emission ratio at their location. The evolutionary age of the cores may also follow from the 13CO versus C18O column densities. The original mass has been estimated for nine representative star formation regions and the original mass of the region correlates well with the integrated 70 µm flux density. Similarly, the X13 CO/XC 18 O ratio, which provides the dissociation ratio activity.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85097343840 &origin=resul tslist&sort=plf -f

31.	High sensitive NH3 sensor based on electrochemically etched porous silicon	Khaniyev, B.A., Sagidolda, Y., Dikhanbayev, K.K., Tileu, A.O., Ibraimov, M.K.	2020	Cogent Engineering Q2 in Engineering	In the current study, porous silicon (por-Si) samples were fabricated by electrochemical etching at different times (20 min, 40 min, 60 min). Scanning electron microscope (SEM) images of horizontal cross-sections of the samples showed the formation of pores. The etched samples' porosity was determined by the gravimetric method and amounted to 59.5%, 72.7%, 83.3%, respectively. Optical characteristics such as Raman spectra and photoluminescence (PL) spectra were obtained. The current-voltage and capacitance-voltage characteristics were also measured to calculate the sensitivity	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85090012509 &origin=resul tslist&sort=plf -f
- 32	Studios of the distinct	Komach T. Baan W	2020	Astronomy and	of the samples. The study results show that sample, which is etched for 40 minutes has a maximum response value to ammonia (NH ₃) gas than others, and the sensitivity is 33.25. The results demonstrated that it is possible to develop a high sensitive sensor device based on por-Si for determining NH ₃ gas in concentrations below 0.1 ppm at room temperature.	https://www.c
32.	Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud	Komesh, T., Baan, W., Esimbek, J.,Rosli, Z., Ibraimov, M.	2020	Astronomy and Astrophysics Q1 in Physics and Astronomy	Aims. We investigate the role of selective dissociation in the process of star formation by comparing the physical parameters of protostellar-prestellar cores and the selected regions with the CO isotope distributions in photo-dissociation regions. We seek to understand whether there is a better connection between the evolutionary age of star forming regions and the effect of selective dissociation Methods. We used wide-field observations of the 12CO, 13CO, and C18O (J = 1-0) emission lines to study the ongoing star formation activity in the Aquila molecular region, and we used the 70 and 250 μ m data to describe the heating of the surrounding material and as an indicator of the evolutionary age of the core. Results. The protostellar-prestellar cores are found at locations with the highest C18O column densities and their increasing 70 μ m/250 μ m emission ratio at their location. The evolutionary age of the cores may also follow from the 13CO versus C18O column densities. The original mass has been estimated for nine representative star formation regions and the original mass of the region correlates well with the integrated 70 μ m flux density. Similarly, the X13 CO/XC 18	nttps://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85097343840 &origin=resul tslist&sort=plf -f

					O ratio, which provides the dissociation rate for these regions correlates with the 70 µm/250 µm flux density ratio and	
					reflects the evolutionary age of the star formation activity.	
33.	Ammonia observations towards the Aquila Rift cloud complex	Tursun, K., Esimbek, J., Henkel, C., Komesh, T., Sailanbek, S.	2020	Astronomy and Astrophysics Q1 in Physics and Astronomy	We surveyed the Aquila Rift complex including the Serpens South and W 40 regions in the NH3 (1,1) and (2,2) transitions making use of the Nanshan 26-m telescope. Our observations cover an area of ~ $1.5^{\circ} \times 2.2^{\circ}$ (11.4 pc × 16.7 pc). The kinetic temperatures of the dense gas in the Aquila Rift complex obtained from NH3 (2,2)/(1,1) ratios range from 8.9 to 35.0 K with an average of 15.3 ± 6.1 K (errors are standard deviations of the mean). Low gas temperatures are associated with Serpens South ranging from 8.9 to 16.8 K with an average of 12.3 ± 1.7 K, while dense gas in the W 40 region shows higher temperatures ranging from 17.7 to 35.0 K with an average of 25.1 ± 4.9 K. A comparison of kinetic temperatures derived from para-NH3 (2,2)/(1,1) against HiGal dust temperatures indicates that the gas and dust temperatures are in agreement in the low-mass-star formation region of Serpens South. In the high-mass-star formation region W 40, the measured gas kinetic temperatures are higher than those of the dust. The turbulent component of the velocity dispersion of NH3 (1,1) is found to be positively correlated with the gas kinetic temperature, which indicates that the dense gas may be heated by dissipation of turbulent energy. For the fractional total-NH3 (para+ortho) abundance obtained by a comparison with Herschel infrared continuum data representing dust emission, we find values from 0.1 ×10-8 to 2.1 ×10-7 with an average of 6.9 (±4.5) × 10-8. Serpens South also shows a fractional total-NH3 (para+ortho) abundance ranging from 0.2 ×10-8 to 2.1 ×10-7 with an average of 8.6 (±3.8) × 10-8. In W 40, values are lower, between 0.1 and 4.3 ×10-8 with an average of 1.6 (±1.4) × 10-8. Weak velocity gradients demonstrate that the rotational energy is a negligible fraction of the gravitational energy. In W 40, gas and dust temperatures are not strongly dependent on the projected distance to the recently formed massive stars. Overall, the morphology of the mapped region is ring-like, with strong	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85096789313 &origin=resul tslist&sort=plf -f
1					emission at lower and weak emission at higher Galactic	

					longitudes. However, the presence of a physical connection	
					between the two parts remains questionable	
					between the two parts remains questionable.	
34.	G15.684-0.29: One of the Largest Galactic Infrared Bubbles Showing Strong Evidence of Triggered Star Formation	Zhou, J., Zhou, D., Esimbek, J.,Komesh, T., Tang, X.	2020	Astrophysical Journal Q1 in Physics and Astronomy	The bubble G15.684-0.29 has a radius of 15.7 pc. Its large size indicates that it may have enough time to trigger star formation. We identify 39 dense cold clumps around the bubble from the Hi-GAL survey. All of them satisfy the criteria for forming massive stars, and most of them lie in the bubble shell. We identify 19 molecular clumps around the bubble from the 12CO(3-2) survey, all of which are gravitationally bound. We found 9 Class I YSOs, 28 Class II YSOs, and 12 transition disks (TDs) around the bubble. For those young stellar objects (YSOs) located within the bubble boundary, 6 of 7 Class I YSOs lie in the shell, 15 of 22 Class II YSOs lie inside the bubble, and 3 of 5 TDs lie inside the bubble. The dynamical age of G15.684-0.29 in a turbulent medium is ~4 Myr, which is much greater than the shell fragmentation time, ~0.82-1.74 Myr. We suggest that triggered star formation may be ongoing in the shell of the bubble, and the collect and collapse model may work here. However, we cannot rule out the possibility that the radiation- driven implosion model may work on the formation of some YSOs. As we expected, the larger bubble has a much longer dynamical age, but we failed to find a clear age gradient for YSOs around the bubble. © 2020. The American Astronomical Society. All rights reserved.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85088531809 &origin=resul tslist&sort=plf -f
35.	Bias voltage-dependent photoinduced current and photoluminescence in organometal perovskite layers on silicon substrates	Sekerbayev, K.S., Shabdan, Y., Mikhailova, S.L., Mikhailova, S.L.Taurbayev, T.I., Timoshenko, V.Y.	2020	Physica B: Condensed Matter Q2 in Electrical and Electronic Engineering	Thin organometal perovskite layers on crystalline silicon substrates under excitation with nanosecond laser pulses were prepared and investigated to reveal an effect of the bias voltage and parameters of the perovskite/silicon structure on photoinduced current and photoluminescence. Numerical simulations of the diffusion, separation and recombination of photoinduced charge carriers in perovskite/silicon structures were carried out to describe both the photoluminescence transient and time-dependent photocurrent at different bias voltage. While the nonradiative surface recombination does not significantly influence the photoluminescence transients for times shorter than 100 ns, the photoinduced current decreases strongly with increasing the surface recombination	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85078729645 &origin=resul tslist&sort=plf -f

					velocity. The simulation results were compared with experimental ones obtained for organometal perovskite deposited on substrates of optically polished crystalline silicon wafers of p-type conductivity and those covered with silicon nanowires. The obtained results are discussed in view of possible applications of the investigated structures in photovoltaics and light emitting optoelectronics.	
36.	Influence of dust particles on ionization equilibrium in partially ionized plasmas	Davletov, A.E., Kurbanov, F., Mukhametkarimov, Y.S.	2020	Physical Review E Q1 in Statistics and Probability	A chemical model is proposed for a dusty plasma consisting of electrons, ions, neutrals, and positively charged dust particles all being at thermodynamic equilibrium. An expression is derived for the Helmholtz free energy, which comprises the ideal part, taking into account the charge of dust particles, and the excess part, evaluated in the framework of the self-consistent chemical model [Phys. Rev. E 83, 016405 (2011)PLEEE81539-375510.1103/PhysRevE.83.016405]. The ionization potential depression for a dust-free partially ionized hydrogen is analytically evaluated for weakly and strongly ionized states to consistently account for the presence of charged and neutral components. An ad hoc interpolation of the ionization potential depression, valid across the whole ionization region, is put forward and subsequent solution of the generalized Saha equation is found to be in a perfect agreement with exact calculations. Minimization of the Helmholtz free energy of dusty plasmas provides the number densities of free electrons, free ions, neutrals, and the dust electric charge as well. Based on consideration of weakly and strongly ionized states, a straightforward comparison is made of the ionization equilibrium in a partially ionized plasma with and without dust particles to demonstrate that at thermal equilibrium positively charged dusts are responsible for an increase in the number density of free electrons and a decrease in the number density of free ions. It is analytically proved that nonideality effects result in a growth of the number densities of free electrons and ions by obtaining the so-called electron and proton ionization potential depressions. Electric charge of dust particles is systematically studied as a full plasma component rather than considering a detailed balance	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85087171769 &origin=resul tslist&sort=plf -f

					of the electron and ion fluxes on the surface of a solitary dust grain.	
37.	Structure of accretion flows in the nova-like cataclysmic variable RW Tri	Subebekova, G., Zharikov, S., Tovmassian, G., Kucáková, H., Khokhlov, S.	2020	Monthly Notices of the Royal Astronomical Society Q1 in Space and Planetary Science	We obtained photometric observations of the nova-like (NL) cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in NL systems is related to the bi-conical wind from the accretion disc's inner part. However, we found that the Ha emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader component's source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period NL systems-a point we discuss.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85093970755 &origin=resul tslist&sort=plf -f
38.	Properties of Galactic B[e] Supergiants. V. 3 Pup- Constraining the Orbital Parameters and Modeling the Circumstellar Environments	Miroshnichenko, A.S., Danford, S., Zharikov, S.V., Kuratova, A.K., Khokhlov, S.A.	2020	Astrophysical Journal Q1 in Physics and Astronomy	We report the results of long-term spectroscopic monitoring of the A-type supergiant with the B[e] phenomenon 3 Pup = HD 62623. We confirm earlier findings that it is a binary system. The orbital parameters were derived using cross-correlation of the spectra in a range of 4460-4632 Å, which contains over 30 absorption lines. The orbit was found to be circular with a period of 137.4 ± 0.1 days, radial velocity semiamplitude K 1 = 5.0 ± 0.8 km s-1, systemic radial velocity $\gamma = +26.4 \pm 2.0$ km s-1, and mass function $f(m)=(1.81-0.76+0.97)\times 10-3$ M o [*] . The object may have evolved from a pair with initial masses of ~6.0 M \odot and ~3.6 M o [*] with an initial orbital period of ~5 days. Based on the fundamental parameters of the A- supergiant (luminosity log L/L o [*] = 4.1 ± 0.1 and effective temperature T eff = 8500 ± 500 K) and evolutionary tracks of mass-transferring binaries, we found current masses of the gainer M 2 = 8.8 ± 0.5 M o [*] and donor M 1 = 0.75 ± 0.25 M o [*] . We also modeled the object's IR-excess and derived a dust	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85088317915 &origin=resul tslist&sort=plf -f

					mass of ~5 10-5 M o' in the optically thin dusty disk. The orbital parameters and properties of the H α line profile suggest that the circumstellar gaseous disk is predominantly circumbinary. The relatively low mass of the gainer led us to a suggestion that 3 Pup should be excluded from the B[e] supergiant group and moved to the FS CMa group. Overall these results further support our original suggestion that FS CMa objects are binary systems, where an earlier mass transfer caused formation of the circumstellar envelope.	
39.	Measurements of the low- energy neutron and gamma ray accompaniment of extensive air showers in the knee region of primary cosmic ray spectrum	Shepetov, A., Chubenko, A., Iskhakov, B., Mukashev, KVil'danova, L., Zhukov, V.	2020	European Physical Journal Plus Q1 in General Physics and Astronomy	Purposeful investigation of radiation fluxes strongly delayed in relation to the main particle front of extensive air shower (EAS) was undertaken at the Tien Shan Mountain Cosmic Ray Station. It was found that the passage of the EAS can be accompanied by the delayed thermal neutrons and by the soft (30–50) keV gamma rays, mostly concentrated within a region of about (5–10) m around the shower axis, where the integral radiation fluence can vary in the limits of $(10^{-4}-1)$ cm ⁻² for neutrons, and of $(0.1 - 1000)$ cm ⁻² for gamma rays. The dependence of signal multiplicity on the shower size N _e has a power shape both for the neutron and gamma ray components, with a sharp increase of its power index around the value of N _e $\approx 10^{-6}$, which corresponds to the position of the 3×10^{-15} eV knee in the primary cosmic ray spectrum. The total duration of detectable radiation signal after the EAS passage can be of some tens of milliseconds in the case of neutron component, and up to a few whole seconds for gamma rays. The delayed accompaniment of low-energy radiation particles can be an effective probe to study the interaction of the hadronic component of EAS.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85078204709 &origin=resul tslist&sort=plf -f
40.	Improvement of the pseudocapacitive performance of cobalt oxide-based electrodes for electrochemical capacitors	Mirzaeian, M., Akhanova, N., Gabdullin, M., Nurbolat, S., Abdullin, K.	2020	Energies Q1 in Control and Optimization	Cobalt oxide nanopowders are synthesized by the pyrolysis of aerosol particles of water solution of cobalt acetate. Cobalt nanopowder is obtained by subsequent reduction of obtained cobalt oxide by annealing under a hydrogen atmosphere. The average crystallite size of the synthesized porous particles ranged from 7 to 30 nm, depending on the synthesis temperature. The electrochemical characteristics of electrodes based on synthesized cobalt oxide and reduced cobalt oxide are investigated in an electrochemical cell using a 3.5 M KOH	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85092889468 &origin=resul tslist&sort=plf -f

					solution as the electrolyte. The results of electrochemical measurements show that the electrode based on reduced cobalt oxide (Re-Co ₃ O ₄) exhibits significantly higher capacity, and lower Faradaic charge–transfer and ion diffusion resistances when compared to the electrodes based on the initial cobalt oxide Co ₃ O ₄ . This observed effect is mainly due to a wide range of reversible redox transitions such as Co(II) \leftrightarrow Co(III) and Co(III) \leftrightarrow Co(IV) associated with different cobalt oxide/hydroxide species formed on the surface of metal particles during the cell operation; the small thickness of the oxide/hydroxide layer providing a high reaction rate, and also the presence of a metal skeleton leading to a low series resistance of the electrode.	
41.	Measurements of the low- energy neutron and gamma ray accompaniment of extensive air showers in the knee region of primary cosmic ray spectrum	Shepetov, A., Chubenko, A., Iskhakov, B., Mukashev, KVil'danova, L., Zhukov, V.	2020	European Physical Journal Plus Q1 in General Physics and Astronomy	Purposeful investigation of radiation fluxes strongly delayed in relation to the main particle front of extensive air shower (EAS) was undertaken at the Tien Shan Mountain Cosmic Ray Station. It was found that the passage of the EAS can be accompanied by the delayed thermal neutrons and by the soft (30–50) keV gamma rays, mostly concentrated within a region of about (5–10) m around the shower axis, where the integral radiation fluence can vary in the limits of (10 ⁻⁴ -1) cm ⁻² for neutrons, and of (0.1 - 1000) cm ⁻² for gamma rays. The dependence of signal multiplicity on the shower size N _e has a power shape both for the neutron and gamma ray components, with a sharp increase of its power index around the value of N _e \approx 10 ⁻⁶ , which corresponds to the position of the 3 × 10 ⁻¹⁵ eV knee in the primary cosmic ray spectrum. The total duration of detectable radiation signal after the EAS passage can be of some tens of milliseconds in the case of neutron component, and up to a few whole seconds for gamma rays. The delayed accompaniment of low-energy radiation particles can be an effective probe to study the interaction of the hadronic component of EAS.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85078204709 &origin=resul tslist&sort=plf -f
42.	Improvement of the pseudocapacitive performance of cobalt	Mirzaeian, M., Akhanova, N., Gabdullin, M., Nurbolat, S., Abdullin, K.	2020	Energies Q1 in Control and Optimization	Cobalt oxide nanopowders are synthesized by the pyrolysis of aerosol particles of water solution of cobalt acetate. Cobalt nanopowder is obtained by subsequent reduction of obtained cobalt oxide by annealing under a hydrogen atmosphere. The average crystallite size of the synthesized porous particles	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85092889468

		oxide-based electrodes for				ranged from 7 to 30 nm, depending on the synthesis	&origin=resul
		electrochemical capacitors				temperature. The electrochemical characteristics of electrodes	tslist&sort=plf
						based on synthesized cobalt oxide and reduced cobalt oxide	-f
						are investigated in an electrochemical cell using a 3.5 M KOH	
						solution as the electrolyte. The results of electrochemical	
						measurements show that the electrode based on reduced cobalt	
						oxide (Re- Co_3O_4) exhibits significantly higher capacity, and	
						lower Faradaic charge–transfer and ion diffusion resistances	
						when compared to the electrodes based on the initial cobalt	
						oxide $C_{3}O_{4}$. This observed effect is mainly due to a wide	
						range of reversible redox transitions such as $Co(II) \leftrightarrow Co(III)$	
						and $Co(111) \rightarrow Co(111)$ associated with different cobait	
						particles during the cell operation: the small thickness of the	
						oxide/hydroxide layer providing a high reaction rate, and also	
						the presence of a metal skeleton leading to a low series	
						resistance of the electrode.	
_	12	Designing of	Marthahavava A A	2020	Iounnal of	Unterpreter and a second secon	http://www.a
	45.	WO3@Co3O4	Markhabayeva, A.A., Moniruddin M. Dupre	2020	Physical	photocatalysts because they offer better charge separation and	copus com/rec
		Heterostructures to	R. Abdullin, K.A. Nuraje.		Chemistry A	broaden light harnessing abilities. Although WO_3 is	ord/display.ur
		Enhance	N.		O2 in Physical	considered an oxygen-evolving photocatalyst with decent	i?eid=2-s2.0-
		Photoelectrochemical			and Theoretical	stability and proper band gap, its lower photocatalytic	85078306915
		Performances			Chemistry	efficiency is ascribed to high charge recombination. In this	&origin=resul
					-	research, a WO ₃ @Co ₃ O ₄ heterostructure reduced the	tslist&sort=plf
						recombination of photocatalytic charges and extended light	-f
						absorption abilities, resulting in improved photocatalytic	
						activity. The presence of Co ₃ O ₄ nanoparticles improved light	
						absorption and charge transfer of tungsten oxide films for	
						photoelectrochemical reactions. For photoelectrochemical	
						water oxidation, $WO_3 @Co_3O_4$ nanostructures generated a	
						photocurrent 20 times higher than that of pure WO_3 . Both	
						electrodeposition and sol get techniques were utilized to	
						electron microscopy and X-ray diffraction were used to	
					1	rection meroscopy and x-ray unnaction were used to	
						characterize the formation of the above photocatalyst A	
						characterize the formation of the above photocatalyst. A photocurrent study was done to investigate the charge	
						characterize the formation of the above photocatalyst. A photocurrent study was done to investigate the charge separation mechanism to explain the enhanced photocatalytic	
						characterize the formation of the above photocatalyst. A photocurrent study was done to investigate the charge separation mechanism to explain the enhanced photocatalytic activity.	

	Кафедра физики плазмы, нанотехнологий и компьютерной физики										
44.	Melting, freezing, and	Aldakul, Y.K	2020	Physical Review	This paper reports on the molecular dynamics simulations of	https://www.s					
	dynamics of two-	Moldabekov, Z.A.,		E	classical two-dimensional (2D) electric dipole systems. The	copus.com/rec					
	dimensional dipole	Ramazanov, T.S			properties of 2D systems with bare (nonscreened) and	ord/display.ur					
	systems in screening bulk	,			screened dipole-dipole interactions have been investigated.	i?eid=2-s2.0-					
	media				Based on the polygon construction method, we present	85093910914					
					simulation results on the phase transition, and we locate the	&doi=10.110					
					melting and freezing points of 2D dipole systems in terms of a	3%2fPhysRev					
					polygon disorder parameter, with the polygon disorder	E.102.033205					
					parameter being the sum of nontriangular polygon order	&origin=inwa					
					parameters. It was found that the phase transition of the	rd&txGid=6ef					
					system occurs when the polygon disorder parameter has a	4b69b6cad99					
					value 0.165. This result was cross-checked by using both local	82be1414d99					
					and overall orientational order parameters. We also identified	a8e1476					
					that the value of the average local orientational order						
					parameter at the phase transition point is 0.67. These results						
					are valid for the ordinary (bare) dipole-dipole interaction as						
					well as the screened dipole-dipole interaction, and they are						
					expected to be general for other 2D systems with repulsive						
					pair interaction. We observed that both melting and freezing						
					points shift to lower values of temperature due to screening. In						
					the liquid state, the radial distribution function and polygon						
					construction method show the loss of order in a structure as						
					screening becomes more severe. Furthermore, the impact of						
					screening on the system's collective excitation spectra and						
					diffusive characteristics at liquid and solid states has been						
					studied. Results show the decrease in the values of both						
					longitudinal and transverse sound speeds and the emergence						
					of anomalous superdiffusive motion in the liquid state due to						
					screening.						
45.	Synthesis of carbon	Yerlanuly, Y., Christy, D.,	2020	Applied Surface	This work is devoted to the synthesis of carbon nanowalls on	https://www.s					
	nanowalls on the surface	Van Nong, N., Kondo, H.,		Science	the surface of a nanoporous aluminum oxide membrane by	copus.com/rec					
	of nanoporous alumina	Alpysbayeva, B.,			radical-injection plasma enhanced chemical vapor deposition	ord/display.ur					
	membranes by RI-PECVD	Nemkayeva, R., Kadyr,			method. Nanoporous alumina oxide membranes with different	i?eid=2-s2.0-					
	method	M., Ramazanov, T.,			morphology and thickness, which were obtained by the	85084035777					
		Gabdullin, M., Batryshev,			method of two-stage electrochemical anodization, were used	&doi=10.101					
		D., Hori, M			as a substrate. For comparative analysis, carbon nanowalls	6%2fj.apsusc.					
					were also obtained on the surface of a silicon substrate and	2020.146533					

					aluminum foil. The synthesized nanostructures were investigated by using scanning electron microscopy and Raman spectroscopy. The dependence of the morphology and height of carbon nanowalls on the pore size and the thickness of the alumina membrane, respectively, was revealed.	&origin=inwa rd&txGid=eec ec9e7cce0241 4ca5bc4462f2 74928
46.	Thermodynamics and statistical physics of quasiparticles within the quark-gluon plasma model	Dzhunushaliev, V., Folomeev, V., Ramazanov, T., Kozhamkulov, T.	2020	Modern Physics Letters A	We consider thermodynamic properties of a quark-gluon plasma related to quasiparticles having the internal structure. For this purpose, we employ a possible analogy between quantum chromodynamics and non-Abelian Proca-Dirac- Higgs theory. The influence of characteristic sizes of the quasiparticles on such thermodynamic properties of the quark- gluon plasma like the internal energy and pressure is studied. Sizes of the quasiparticles are taken into account in the spirit of the van der Waals equation but we take into consideration that the quasiparticles have different sizes, and the average value of these sizes depends on temperature. It is shown that this results in a change in the internal energy and pressure of the quark-gluon plasma. Also, we show that, when the temperature increases, the average value of characteristic sizes of the quasiparticles increases as well. This leads to the occurrence of a phase transition at the temperature at which the volume occupied by the quasiparticles is compared with the volume occupied by the plasma.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85088967278 &doi=10.114 2%2fS021773 2320501941& origin=inward &txGid=b656 91da3f80506c 585e7b60849 641e6
47.	Non-Abelian Proca theories with extra fields: Particlelike and flux tube solutions	Dzhunushaliev, V., Dzhunushaliev, V., Dzhunushaliev, V., Folomeev, V., Folomeev, V., Folomeev, V., Kozhamkulov, T., Makhmudov, A., Ramazanov, T.	2020	Physica Scripta	We consider non-Abelian Proca theories with extra fundamental fields included. In the case of SU(2) Proca theory with nonlinear scalar and spinor fields, we obtain spherically symmetric regular solutions describing particlelike configurations with finite energy. For such systems, we find the energy spectrum and show the presence of a mass gap. In the case of SU(3) Proca theory with a nonlinear scalar field, we obtain cylindrically symmetric solutions describing tubes either with the flux of a longitudinal electric field or with the energy flux or with both of them. It is shown that the tubes with the energy flux may contribute considerably to the Proca proton spin. Consistent with all of this, we have argued that non-Abelian Proca theories containing extra fields may approximately describe some phenomena in QCD.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85087526359 &doi=10.108 8%2f1402- 4896%2fab97 91&origin=in ward&txGid= eeb4f222b655 44d442cec9f 6b3d68f9

48.	Superhydrophobic carbonous surfaces production by PECVD methods	Orazbayev, S., Zhumadilov, R., Zhunisbekov, A., Gabdullin, M., Yerlanuly, Y., Utegenov, A., Ramazanov, T.	2020	Applied Surface Science	The paper presents the results of a complex study of superhydrophobic surfaces obtained by PECVD methods in RF discharge plasma with gas mixtures (Ar/CH4 and Ar/C2H2) and by plasma jet (Ar/CH4). In both experiments hydrophobic surfaces were obtained by deposition of carbon nanoparticles on glass and silicon substrates by plasma of Ar (93%) + CH4 (7%) and Ar (93%) + C2H2 (7%) gas mixtures. To compare surfaces with high hydrophobicity produced by the above two methods their contact angles were studied. The dependence of changes in the contact angle on the storage time of the samples under normal conditions show that samples obtained in Ar/CH4 plasma and plasma jet at atmospheric pressure are much better preserved.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85081659297 &doi=10.101 6%2fj.apsusc. 2020.146050 &origin=inwa rd&txGid=9a 9be7dc8fdc9f 5558ffe57a4f 70ff1d
49.	Ion energy-loss characteristics and friction in a free-electron gas at warm dense matter and nonideal dense plasma conditions	Moldabekov, Z.A., Dornheim, T., Bonitz, M., Ramazanov, T.S.	2020	Physical Review E	We investigate the energy-loss characteristics of an ion in warm dense matter (WDM) and dense plasmas concentrating on the influence of electronic correlations. The basis for our analysis is a recently developed ab initio quantum Monte Carlo- (QMC) based machine learning representation of the static local field correction (LFC) [Dornheim, J. Chem. Phys. 151, 194104 (2019)JCPSA60021-960610.1063/1.5123013], which provides an accurate description of the dynamical density response function of the electron gas at the considered parameters. We focus on the polarization-induced stopping power due to free electrons, the friction function, and the straggling rate. In addition, we compute the friction coefficient which constitutes a key quantity for the adequate Langevin dynamics simulation of ions. Considering typical experimental WDM parameters with partially degenerate electrons, we find that the friction coefficient is of the order of $\gamma/\omega pi=0.01$, where ωpi is the ionic plasma frequency. This analysis is performed by comparing QMC-based data to results from the random-phase approximation (RPA), the Mermin dielectric function, and the Singwi-Tosi-Land- Sjölander (STLS) approximation. It is revealed that the widely used relaxation time approximation (Mermin dielectric function) has severe limitations regarding the description of the energy loss of ions in a correlated partially degenerate electrons gas. Moreover, by comparing QMC-based data with the results obtained using STLS, we find that the ion energy-	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85086302088 &doi=10.110 3%2fPhysRev E.101.053203 &origin=inwa rd&txGid=c8 4ac343d88ba5 846046d3372 c8c2236

					loss properties are not sensitive to the inaccuracy of the static local field correction (LFC) at large wave numbers, k/kF>2 (with kF being the Fermi wave number), but that a correct description of the static LFC at k/kF1.5 is important.	
50.	Collision between a charged particle and a polarizable neutral particle in plasmas	Bastykova, N.K., Moldabekov, Z.A., Kodanova, S.K., Ramazanov, T.S	2020	Physics of Plasmas	The collision of a polarizable neutral particle with a charged particle in plasmas is studied. The neutral particle interaction with a charged particle is considered to be due to an induced dipole moment. Taking into account screening and a finite size of colliding particles, we present accurate and simple interpolation formulas for the total scattering cross section in the case of contact of the neutral particle with the dust particle surface. The results are obtained for both weak and strong coupling between colliding particles.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85084182851 &doi=10.106 3%2f5.00041 63&origin=in ward&txGid= 6e773986798 836d7f3b36d4 b73cc978c
51.	Obtaining of carbon nanowalls in the plasma of radio-frequency discharge	Batryshev, D., Yerlanuly, Y., Alpysbaeva, B., Nemkaeva, R., Ramazanov, T., Gabdullin, M.	2020	Applied Surface Science	In this work a synthesis of carbon nanowalls (CNWs) in the plasma of argon and methane gases of capacitively coupled radio-frequency (CCRF) discharge is considered. The carbon nanowalls were synthesized by plasma enhanced chemical vapor deposition method at relatively lower values of discharge power and gas flow rate for low-cost CNWs production. The growth process of carbon nanowalls was studied at different synthesis parameters. The morphology and structure quality of obtained samples were investigated by Raman spectroscopy, scanning electron and atomic force microscopies. It was found, that at a lower value of RF power the formation of CNWs goes better with increasing methane flow rate and further increasing RF power leads to agglomeration of nanowalls and formation of nanoclusters, which then transfer into multilayered graphene. Thus, on the basis of obtained results, a process map with different zones of deposited carbon nanostructures is developed.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85074139354 &doi=10.101 6%2fj.apsusc. 2019.144119 &origin=inwa rd&txGid=c2 73363f306914 14485c25754 4b28b9d
52.	Dynamic characteristics of three-dimensional strongly coupled plasmas	Arkhipov, Y.V., Ashikbayeva, A., Askaruly, A., Davletov, A.E., Dubovtsev, D.Y.,	2020	Physical Review E	The dynamic structure factor and other dynamic characteristics of strongly coupled one-component plasmas have been studied [Yu. V. Arkhipov, Phys. Rev. Lett. 119, 045001 (2017)PRLTAO0031-	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0-

		Santybayev, K.S., Syzganbayeva, S.A., Conde, L., Tkachenko, I.M.			900710.1103/PhysRevLett.119.045001] using the self- consistent version of the method of moments. Within any version of the latter, the system dielectric function satisfies all involved sum rules and other exact relations automatically, and the advantage of this version is that, in addition, the dynamic characteristics (the dynamic structure factor, the dispersion, and decay parameters of the collective modes) are all expressed in terms of the static ones (the static structure factor) without any adjustment to the simulation data. The approach outlined in the aforementioned Letter is justified in detail and applied mainly to the classical Coulomb systems achieving satisfactory agreement with new numerical simulation data. It is shown how the realm of applicability of the method can be extended to partly degenerate and multicomponent systems, even to simple liquids. Some additional theoretical results are presented in the Supplemental Material.	85097581584 &doi=10.110 3%2fPhysRev E.102.053215 &origin=inwa rd&txGid=0ca 04a04c5d460 7ffc0fd275d8 229857
53.	Performance optimization of back-contact perovskite solar cells with quasi- interdigitated electrodes	Shalenov, E.O., Dzhumagulova, K.N., Ng, A., Jumabekov, A.N.	2020	Solar Energy	A numerical simulation method is used to investigate intricacies of a complex relation between the back-contact electrode (BCE) geometric parameters, the perovskite photo- absorber layer electronic properties, and device performance in back-contact perovskite solar cells (BC-PSCs) with quasi- interdigitated electrodes (QIDEs). To unlock the full potential of BC-PSC with QIDEs, the device performance was investigated by systematically varying the geometric parameters of BCE and the perovskite photo-absorber layer electronic parameters in order to determine the conditions for a best device performance. BC-PSC with QIDEs have a potential to produce power conversion efficiencies (PCEs) higher than PSCs with the conventional sandwich architecture if optimized parameters for electrode geometry and perovskite electronic properties are used. The findings of the present work give an insight into the work principle of these devices and provide a theoretical guidance for design and fabrication of high-performance BC-PSC with QIDEs.	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85085204203 &origin=resul tslist&sort=plf - f&src=s&nlo= &nlr=&nls=& sid=0d429ca8 af0dab7edbfa 74eb7579cc4f &sot=aut&sdt =cl&cluster=s coprefnameau id%2c%22Ra mazanov%2c +T.S.%23670 1328029%22 %2cf%2c%22 Gabdullin%2c

						+M.T.%2312
						805229400%2
						2%2cf%2bsco
						prefnameauid
						%2c%22Koda
						nova%2c+S.K
						.%236504252
						200%22%2cf
						%2c%22Ram
						asanov%2c+T
						.S.%2367013
						28029%22%2
						cf%2c%22Ra
						mazanov%2c
						+T.%2367013
						28029%22%2
						cf&sl=17&s=
						AU-
						ID%2865058
						183/2%29&r
						elpos=3&cite
						Cnt=5&search
						1 erm=
54.	The pulse vacuum-arc	Zhukeshov,	2020	Applied Physics	In paper described the results of work on the application of	https://www.s
	plasma generator for	A.M., Gabdullina,		A: Materials	vacuum-arc machine in nanoengineering area. Researches	copus.com/in
	nanoengineering	A.T., Amrenova,		Science and	were carried out to optimize the operation of this machine for	ward/record.u
	application	A.U., Fermakhan, K.		Processing	the synthesis of nanomaterials in low-pressure arc-discharge	ri?eid=2-s2.0-
					plasma, plasma diagnosis and production of nanopowders. An	85089953433
					electrode system based on the grounded cathode with impulse	&doi=10.100
					ignition has been developed. The anode current was measured	7%2fs00339-
					and the mass output of the product was calculated.	020-03922-
					Experimental data on energy density were obtained,	7&partnerID=
					confirming the presence of plasma focusing on the electrode	40&md5=a7b
					system axis due to its own magnetic field, the focus value of	210da300f039
					which reaches about 18 kJ/m2. Powder samples were also	526c330d399
					obtained in the form of clusters containing the copper particles	71e935
1					(up to 98%) and spherical powder with size from 116 nm to	

					1.2 µm. Homogeneity and dispersion of powder depended on	
					the time of the processes accompanying the deposition	
55.	Plasma-grain interaction in	Sundar S., Moldabekov	2020	Physics of	The present particle-in-cell simulation for grain-plasma	https://www.s
	ultracold complex plasmas	Z.A.		Plasmas	interaction at cryogenic temperatures springs from recent	copus.com/rec
					experimental realization of ultracold dusty plasmas with atoms	ord/display.ur
					and ions at superfluid helium temperatures. In this work, we	i?eid=2-s2.0-
					discuss the results of particle-in-cell simulations (taking into	85081123431
					account ion-atom collisions) for dust particle charge, ion drag	&origin=resul
					force, and interaction between grains in ultracold dusty	tslist&sort=plf
					plasmas. The single grain as well as two grain system is	-
					investigated, considering both streaming ions and equilibrium	f&src=s&nlo=
					ions. The dependence of plasma mediated inter-grain	&nlr=&nls=&
					interactions on the streaming velocity of ions and inter-	sid=05847e42
					particle separation is delineated in detail. Additionally, ion	5fb443898eac
					density distribution around grains is discussed. The	83b172907f35
					interactions at cryogenic temperatures are distinct from those	&sot=aut&sdt
					at room temperature by their differences in magnitude and	=cl&cluster=s
					interaction mechanism details. Most remarkable features are	coprefnameau
					(i) the inter-grain attraction in equilibrium plasmas due to	id%2c%22Ra
					plasma absorption on the surface of grains, (ii) the ion drag	mazanov%2c
					force directed against ion streaming velocity in the case of a	+T.S.%23670
					single dust particle, and (iii) non-linear response of the plasma	1328029%22
					polarization around grains with an increase in the streaming	%2cf%2c%22
					velocity of ions.	Kodanova%2
						c+S.K.%2365
						04252200%22
						%2cf%2c%22
						Bastykova%2
						c+N.K.%2354
						390754300%2
						2%2cf%2c%2
						2Dornheim%
						2c+T.%23571
						91924827%22
						%2cf%2c%22
						Dzhumagulov
						a%2c+K.N.%
						23650581837
						2%22%2cf%2

						bscoprefname
						auid% $2c\%22$
						Zhukeshov%2
						c+A.M.%236
						506178953%2
						2%2cf%2bsco
						prefnameauid
						%2c%22Ram
						azanov%2c+T
						.%236701328
						029%22%2cf
						%2bscoprefna
						meauid%2c%
						22Zhukeshov
						%2c+A.%236
						506178953%2
						2%2cf&sl=18
						&s=AU-
						ID%2842262
						372500%29&
						relpos=2&cite
						Cnt=5&search
						Term=
56.	Ultracold ions wake in	Sundar S., Moldabekov	2020	New Journal of	Motivated by the recent experimental realization of ultracold	https://www.s
	dusty plasmas	Z.A.		Physics	dusty plasma (2019 Sci. Rep. 9 3261), we present the results	copus.com/rec
					of particle-in-cell simulation with Monte-Carlo-collisions for	ord/display.ur
					wake behind a dust particle due to focusing of ions at	i?eid=2-s2.0-
					superfluid helium temperature (2 K). Dynamical screening	85083342534
					(wakefield) defines structural and dynamical properties of	&origin=resul
					charged dust particles in plasmas such as phase transition,	tslist&sort=plf
					crystal formation, vibration modes (waves) etc. Here, we	-
					delineate in detail the dependence of wake strength on the	f&src=s&nlo=
					streaming velocity of ions and on the ion-neutral charge	&nlr=&nls=&
					exchange collision frequency (neutrals density) in the	sid=05847e42
					ultracold dusty plasma. Lowering the temperature to ultracold	5fb443898eac
					level leads to a wake pattern behind a dust particle that	83b172907f35
					completely differs from the wake at normal conditions. For	&sot=aut&sdt
					wide range of parameters, most remarkable features of the	=cl&cluster=s
					wakefield are (i) the formation of wake pattern with two	coprefnameau

			maxima split in transverse to ion flow direction in the	id%2c%22Ra
			downstream area, (ii) pronounced inverse V shape of the	mazanov%2c
			wakefield closely resembling the wake in quark-gluon plasma	+T.S.%23670
			and dense quantum plasma (warm dense matter), and (iii) the	1328029%22
			inter-dust attraction region in transverse direction. The latter	%2cf%2c%22
			shows that molecule-like interaction between dust particles is	Kodanova%2
			realized in ultracold dusty plasmas. These observations show a	c+S.K.%2365
			fundamental difference of ultracold dusty plasma physics from	04252200%22
			well studied complex plasmas at normal conditions.	%2cf%2c%22
				Bastykova%2
				c+N.K.%2354
				390754300%2
				2%2cf%2c%2
				2Dornheim%
				2c+T.%23571
				91924827%22
				%2cf%2c%22
				Dzhumagulov
				a%2c+K.N.%
				23650581837
				2%22%2cf%2
				bscoprefname
				auid%2c%22
				Zhukeshov%2
				c+A.M.%236
				506178953%2
				2%2cf%2bsco
				prefnameauid
				%2C%22Kam
				azanov% 2c+1
				.%230701328
				029%22%2Cl
				7020scoprema moguid%2c04
				227bukeshov
				$\%2c\pm\Delta$ %226
				702C+A.70230 5061780530%2
				2%2cf & s1 - 18
				2702010051-10
1	1			us-nu-

						ID%2842262 372500%29& relpos=1&cite Cnt=9&search Term=
57.	Oblique magnetic field influence on the wakefield in complex plasmas	Sundar S., Moldabekov Z.A.	2020	Plasma Physics and Controlled Fusion	The results of an investigation of the wakefield around a stationary charged grain in an external magnetic field with non-zero transverse component with respect to the ion flow direction is presented. In contrast to the previously reported significant suppression of the wake oscillations due to the magnetic field applied along the flow, the wake potential exhibits long range recurrent oscillations in the presence a of transverse flow to the magnetic field. Extensive analysis for a wide range of parameters elucidate a strong dependence of the wake on the orientation of the magnetic field in the sonic and supersonic regimes by manifesting sensitivity to even a meager deviation of magnetic field from the longitudinal direction. The impact of the orientation and strength of magnetic field on the wake behavior is assessed. The deviation of the magnetic field induction vector from the longitudinal to ion flux direction leads to the wakefield with two positive peaks split in the transverse to ion flow direction in the downstream region; similar to that of the ultracold ions wake without magnetic field [(2020) New J. Phys. 22 033028].	https://www.s copus.com/rec ord/display.ur i?eid=2-s2.0- 85092056762 &origin=resul tslist&sort=plf - f&src=s&nlo= &nlr=&nls=& sid=05847e42 5fb443898eac 83b172907f35 &sot=aut&sdt =cl&cluster=s coprefnameau id%2c%22Ra mazanov%2c +T.S.%23670 1328029%22 %2cf%2c%22 Kodanova%2 c+S.K.%2365 04252200%22 %2cf%2c%22 Bastykova%2 c+N.K.%2354 390754300%2 2%2cf%2c%22 2Dornheim% 2c+T.%23571 91924827%22 %2cf%2c%22 Dzhumagulov

			a%2c+K.N.%
			23650581837
			2%22%2cf%2
			bscoprefname
			auid%2c%22
			Zhukeshov%2
			c+A.M.%236
			506178953%2
			2%2cf%2bsco
			prefnameauid
			%2c%22Ram
			azanov%2c+T
			.%236701328
			029%22%2cf
			%2bscoprefna
			meauid%2c%
			22Zhukeshov
			%2c+A.%236
			506178953%2
			2%2cf&sl=18
			&s=AU-
			ID%2842262
			372500%29&
			relpos=0&cite
			Cnt=3&search
			Term=